Data itself and Data Science especially, is one of the drivers of digitalisation. Many companies experimented with Data Science over the last years and gained significant insights and learnings from it. Often, people dealing with statistics started to do this magic thing called data science. But also technical units used machine learning and alike to further improve their businesses. However, for many other units within traditional companies, all of this seems like magic and dangerous. So how to include others not dealing with the topic in detail and thus de-mystify the topic? So what does it take to become data driven?

How to become data driven

First of all, Machine Learning and Data Science isn‘t the revolution. Units started implementing it in order to gain new insights and improve their business results. However, often it is also acquired via business projects from consulting companies. The newer and complex a topic is, the higher the risk is that people will object it. The reasons for that are fear and mis- or not understanding.

When being deep in the topic of data and data science, you might be treated with fame by some. Mainly by those, that think that you are a magician. However, you will also be rejected by others. Both is poisoning in my opinion. The first group will try to get very close to you and expects a lot. However, you are often not capable of meeting their expectations. After a while, they get frustrated by far too high expectations.

In corporate environments, it is very important to filter this group at the very beginning. You need to clearly state what they can expect and what not. It is also important to state towards them what they won‘t get – and saying „No“ is very important to them as well. Being transparent with this group is essential – in order to keep them close supporters to you in a growing environment. You will depend a lot on those people if you want to succeed. So be clear with them.

People fear digitalisation

The other group – which I would say in digitalisation is the bigger group – is the group that will meet you with fears and doubts. This group is the far larger group and it is highly important that you cover them well. You can easily recognise people in this group by not being open towards your topics. Some are probably actively refusing it, others might not be so active and just poison the climate. But be aware: they usually don‘t do it because they hate you for some reasons.

They are just acting human and are either afraid, feel that they are not included or have other doubts about you and your unit. It is highly essential to work on a communication strategy with this group and pro-actively include them. Bringing clarity and de-mystifying your topic in easy terms is vital. It is important that you create a lot of comparisons to your traditional business and keep it simply. Once you gained their trust and interest, you can get much deeper into your topic and provide learning paths and skill development for those people.

If you succeeded in that, you created strong supporters that will come up with great ideas to improve your business even further. Keep in mind: just because you are in a „hot topic“ like big data and data science and you might be treated like a rock star by some, others are also great in doing things and it all boils down to: we are just humans.

No digitalisation without a data strategy

Digitalisation needs trust to succeed. If you fail to deliver trust and don’t include the human aspect, your digitalisation and data strategy is poised to fail – independent of the budget and C-Level support you might have for your initiative. So, make sure to work on that – with high focus! Becoming data driven is the driver for digitalisation in your company!

This post is part of the “Big Data for Business” tutorial. In this tutorial, I explain various aspects of handling data right within a company. Another article I like about data driven organisations can be found on Forbes.

0 replies

Leave a Reply

Want to join the discussion?
Feel free to contribute!

Leave a Reply