golden record

In our last tutorial for Data Governance, we now look at Master Data Management. This is the last of our four pillars. Master Data is the core data in the company, which should be clean, accurate and in a clear data model.

What is the goal of Master Data Management?

It is important to have exactly one dataset of key data assets within the company. This could for instance be the data about a customer or a supplier. It is useful to have one customer exactly once. Many companies have their customer data spread over different systems and thus having issues getting a connection between those systems. If a customer walks into a store, the sales agents often have to use different CRM tools to get a holistic picture of the customer. This often leads to not fully understanding the customer within a company.

In order to reach this, it is necessary to harmonise within a company. Reducing double entries and finding the “golden record” is a key challenge in MDM: all data about one customer should be connected and in one place. Today, this is often called “Customer 360”. But achieving this isn’t easy at all.

How to find the “Golden Record”?

Basically, there are several options to find the golden record within a dataset. Let’s imagine we have the following dataset; each of the entries is exactly the same person, but names are written different:

NameSocial Security NumberPassportMatching Group ID
Mario Meir123-45-6789
Meir Mario123-45-6789P 123456 M
M. MeirP 123456 M
How to find the golden record in a dataset

Basically, in this dataset, we see that there is a match on the social security number and on the passport. So, we can apply hierarchical matching. First, we match those entries that are rather unique. Normally, the social security number is unique, as well as the passport ID. In this case, we could match the dataset to one dataset. This would be now represented in matching groups:

NameSocial Security NumberPassportMatching Group ID
Mario Meir123-45-67891
Meir Mario123-45-6789P 123456 M1
M. MeirP 123456 M
Hierarchical matching

What else can be done to increase the quality of your Master Data?

Basically, in addition to hierarchical matching, there are several other techniques available. The most common one is the “manual matching”, where employees seek for duplicated data and thus match this data. However, a better approach is to match data via machine learning and combine it with the “manual matching”!

This tutorial is part of the Data Governance Tutorial. You can learn more about Data Governance by going through this tutorial. On Cloudvane, there are many more tutorials about (Big) Data, Data Science and alike, read about them in the Big Data Tutorials here. If you look for great datasets to play with, I would recommend you Kaggle.